library(dplyr)
library(ggplot2)
library(scales)
# inspired by tmwr.org
data(ames, package = "modeldata")
ggplot(ames, aes(x = Sale_Price)) +
geom_histogram(bins = 50, col= "white") +
scale_x_log10(labels = label_dollar(scale_cut = cut_long_scale())) +
theme(
axis.text.x = element_text(size = 10),
plot.margin = margin(0, 1, 0, 0, "cm")
)
This is a Quarto blog
123
This is a test post based on the Quarto blog writing guide by Albert Rapp.
Intro
This post is to show some of Quarto’s blog features. I might revisit and edit this post from time to time to experiment with the layout and appearance of my blog. When I first created my blog I used this post to figure out the light and dark toggle options.
Section with subsections
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam suscipit est nec dui eleifend, at dictum elit ullamcorper. Aliquam feugiat dictum bibendum. Praesent fermentum laoreet quam, cursus volutpat odio dapibus in. Fusce luctus porttitor vehicula. Donec ac tortor nisi. Donec at lectus tortor. Morbi tempor, nibh non euismod viverra, metus arcu aliquet elit, sed fringilla urna leo vel purus.
Inline Code
This is inline
code plus a small code chunk.
Ooh la la - Tabsets
Code
%>%
preds_lm ggplot(aes(body_mass_g, bill_length_mm, col = correct)) +
geom_jitter(size = 4, alpha = 0.6) +
facet_wrap(vars(species)) +
scale_color_manual(values = c('grey60', thematic::okabe_ito(3)[3])) +
scale_x_continuous(breaks = seq(3000, 6000, 1000)) +
theme_minimal(base_size = 12) +
theme(
legend.position = 'top',
panel.background = element_rect(color = 'black'),
panel.grid.minor = element_blank()
+
) labs(
x = 'Body mass (in g)',
y = 'Bill length (in mm)'
)
Code
<- glm(sex ~ body_mass_g + bill_length_mm + species, family = binomial, data = dat)
glm.mod
<- dat %>%
preds mutate(
prob.fit = glm.mod$fitted.values,
prediction = if_else(prob.fit > 0.5, 'male', 'female'),
correct = if_else(sex == prediction, 'correct', 'incorrect')
)
%>%
preds ggplot(aes(body_mass_g, bill_length_mm, col = correct)) +
geom_jitter(size = 4, alpha = 0.6) +
facet_wrap(vars(species)) +
scale_x_continuous(breaks = seq(3000, 6000, 1000)) +
scale_color_manual(values = c('grey60', thematic::okabe_ito(3)[3])) +
theme_minimal(base_size = 10) +
theme(
legend.position = 'top',
panel.background = element_rect(color = 'black'),
panel.grid.minor = element_blank()
+
) labs(
x = 'Body mass (in g)',
y = 'Bill length (in mm)'
)
Subsubsection - LaTeX stuff
\[ \int_0^1 f(x) \ dx \]
We’ve got columns
geom_density(
mapping = NULL,
data = NULL,
stat = "density",
position = "identity",
...,na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
outline.type = "upper"
)
stat_density(
mapping = NULL,
data = NULL,
geom = "area",
position = "stack",
...,bw = "nrd0",
adjust = 1,
kernel = "gaussian",
n = 512,
trim = FALSE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
We can even do captions
ggplot(data = gapminder::gapminder, mapping = aes(x = lifeExp, fill = continent)) +
stat_density(position = "identity", alpha = 0.5)